Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Healthc Inform Res ; 5(1): 54-69, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1471846

ABSTRACT

Testing is crucial for early detection, isolation, and treatment of coronavirus disease (COVID-19)-infected individuals. However, in resource-constrained countries such as the Philippines, test kits have limited availability. As of 11 April 2020, there are 11 testing centers in the country that have been accredited by the Department of Health (DOH) to conduct testing. In this paper, we use nonlinear programming (NLP) to determine the optimal percentage allocation of COVID-19 test kits among accredited testing centers in the Philippines that gives an equitable chance to all infected individuals to be tested. Heterogeneity in testing accessibility, population density of municipalities, and the capacity of testing facilities are included in the model. Our results show that the range of optimal allocation per testing center are as follows: Research Institute for Tropical Medicine (4.17-6.34%), San Lazaro Hospital (14.65-24.03%), University of the Philippines-National Institutes of Health (16.25-44.80%), Lung Center of the Philippines (15.8-26.40%), Baguio General Hospital Medical Center (0.58-0.76%), The Medical City, Pasig City (5.96-25.51%), St. Luke's Medical Center, Quezon City (1.09-6.70%), Bicol Public Health Laboratory (0.06-0.08%), Western Visayas Medical Center (0.71-4.52%), Vicente Sotto Memorial Medical Center (1.02-2.61%), and Southern Philippines Medical Center (≈ 0.01%). Our results can serve as a guide to the authorities in distributing the COVID-19 test kits. These can also be used for proposing additional testing centers and utilizing the available test kits properly and equitably, which helps in "flattening" the epidemic curve.

2.
Netw Model Anal Health Inform Bioinform ; 10(1): 17, 2021.
Article in English | MEDLINE | ID: covidwho-1121504

ABSTRACT

The number of COVID-19 cases is continuously increasing in different countries including the Philippines. It is estimated that the basic reproduction number of COVID-19 is around 1.5-4 (as of May 2020). The basic reproduction number characterizes the average number of persons that a primary case can directly infect in a population full of susceptible individuals. However, there can be superspreaders that can infect more than this estimated basic reproduction number. In this study, we formulate a conceptual mathematical model on the transmission dynamics of COVID-19 between the frontliners and the general public. We assume that the general public has a reproduction number between 1.5 and 4, and frontliners (e.g. healthcare workers, customer service and retail personnel, food service crews, and transport or delivery workers) have a higher reproduction number. Our simulations show that both the frontliners and the general public should be protected against the disease. Protecting only the frontliners will not result in flattening the epidemic curve. Protecting only the general public may flatten the epidemic curve but the infection risk faced by the frontliners is still high, which may eventually affect their work. The insights from our model remind us of the importance of community effort in controlling the transmission of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL